合并两个有序数组#
给你两个按 非递减顺序 排列的整数数组 nums1
和 nums2
,另有两个整数 m
和 n
,分别表示 nums1
和 nums2
中的元素数目。
请你 合并 nums2
到 nums1
中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1
中。为了应对这种情况,nums1
的初始长度为 m + n
,其中前 m
个元素表示应合并的元素,后 n
个元素为 0
,应忽略。nums2
的长度为 n
。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
class Solution:
def merge(self, nums1: list[int], m: int, nums2: list[int], n: int) -> None:
"""
Do not return anything, modify nums1 in-place instead.
"""
i, j = m - 1, n - 1
k = len(nums1) - 1
while (i >= 0 and j >= 0):
if (nums1[i] > nums2[j]):
nums1[k] = nums1[i]
i -= 1
else:
nums1[k] = nums2[j]
j -= 1
k -= 1
if (i == -1):
for i in range(0, j+1):
nums1[i] = nums2[i]
移除元素#
给你一个数组 nums
和一个值 val
,你需要 原地 移除所有数值等于 val
的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1)
额外空间并 原地 修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1:
输入:nums = [3,2,2,3], val = 3
输出:2, nums = [2,2]
解释:函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。例如,函数返回的新长度为 2 ,而 nums = [2,2,3,3] 或 nums = [2,2,0,0],也会被视作正确答案。
示例 2:
输入:nums = [0,1,2,2,3,0,4,2], val = 2
输出:5, nums = [0,1,4,0,3]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。
class Solution:
def removeElement(self, nums: list[int], val: int) -> int:
i, j = 0, len(nums)
while (i < j):
if (nums[i] == val):
j -= 1
nums[i] = nums[j]
else:
i += 1
return j
删除有序数组中的重复项#
给你一个 升序排列 的数组 nums
,请你 ** 原地** 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums
中唯一元素的个数。
考虑 nums
的唯一元素的数量为 k
,你需要做以下事情确保你的题解可以被通过:
- 更改数组
nums
,使nums
的前k
个元素包含唯一元素,并按照它们最初在nums
中出现的顺序排列。nums
的其余元素与nums
的大小不重要。 - 返回
k
。
示例 1:
输入:nums = [1,1,2]
输出:2, nums = [1,2,_]
解释:函数应该返回新的长度 2 ,并且原数组 nums 的前两个元素被修改为 1, 2 。不需要考虑数组中超出新长度后面的元素。
示例 2:
输入:nums = [0,0,1,1,1,2,2,3,3,4]
输出:5, nums = [0,1,2,3,4]
解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。
class Solution:
def removeDuplicates(self, nums: list[int]) -> int:
j = 0
for i in range(1, len(nums)):
if (nums[i] != nums[j]):
nums[j + 1] = nums[i]
j += 1
return j + 1
删除有序数组中的重复项 II#
给你一个有序数组 nums
,请你 ** 原地** 删除重复出现的元素,使得出现次数超过两次的元素只出现两次 ,返回删除后数组的新长度。
不要使用额外的数组空间,你必须在 原地 修改输入数组 并在使用 O (1) 额外空间的条件下完成。
示例 1:
输入:nums = [1,1,1,2,2,3]
输出:5, nums = [1,1,2,2,3]
解释:函数应返回新长度 length = 5, 并且原数组的前五个元素被修改为 1, 1, 2, 2, 3 。 不需要考虑数组中超出新长度后面的元素。
示例 2:
输入:nums = [0,0,1,1,1,1,2,3,3]
输出:7, nums = [0,0,1,1,2,3,3]
解释:函数应返回新长度 length = 7, 并且原数组的前五个元素被修改为 0, 0, 1, 1, 2, 3, 3 。 不需要考虑数组中超出新长度后面的元素。
class Solution:
def removeDuplicates(self, nums: list[int]) -> int:
if (len(nums) <= 2):
return len(nums)
i = 1
for j in range(2, len(nums)):
if (nums[j] != nums[i] or nums[j] == nums[i] and nums[j] != nums[i-1]):
nums[i + 1] = nums[j]
i += 1
return i + 1
多数元素#
给定一个大小为 n
的数组 nums
,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋
的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1:
输入:nums = [3,2,3]
输出:3
示例 2:
输入:nums = [2,2,1,1,1,2,2]
输出:2
class Solution:
def majorityElement(self, nums: list[int]) -> int:
count = 0
res = nums[0]
for num in nums:
if (count == 0 or res == num):
res = num
count += 1
else:
count -= 1
return res
轮转数组#
给定一个整数数组 nums
,将数组中的元素向右轮转 k
个位置,其中 k
是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
class Solution:
def rotate(self, nums: list[int], k: int) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
def reverse(nums, start, end):
while (start < end):
nums[start], nums[end] = nums[end], nums[start]
start += 1
end -= 1
k = k % len(nums)
reverse(nums, 0, len(nums) - k - 1)
reverse(nums, len(nums) - k, len(nums)-1)
reverse(nums, 0, len(nums)-1)
买卖股票的最佳时机#
给定一个数组 prices
,它的第 i
个元素 prices[i]
表示一支给定股票第 i
天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0
。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
class Solution:
def maxProfit(self, prices: list[int]) -> int:
minprice = int(1e9)
maxprofit = 0
for price in prices:
maxprofit = max(price - minprice, maxprofit)
minprice = min(price, minprice)
return maxprofit
跳跃游戏#
给定一个非负整数数组 nums
,你最初位于数组的 第一个下标 。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
class Solution:
def canJump(self, nums: list[int]) -> bool:
n, rightmost = len(nums), 0
for i in range(n):
if (i <= rightmost):
rightmost = max(rightmost, i + nums[i])
if (rightmost >= n-1):
return True
return False
跳跃游戏 II#
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
class Solution:
def jump(self, nums: list[int]) -> int:
n = len(nums)
rightmost, end, step = 0, 0, 0
for i in range(n-1):
if (rightmost >= i):
rightmost = max(rightmost, i + nums[i])
if (i == end):
end = rightmost
step += 1
return step
除自身以外数组的乘积#
给你一个整数数组 nums
,返回 数组 answer
,其中 answer[i]
等于 nums
中除 nums[i]
之外其余各元素的乘积 。
题目数据 保证 数组 nums
之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 ** 不要使用除法,** 且在 O(*n*)
时间复杂度内完成此题。
示例 1:
输入: nums = [1,2,3,4]
输出: [24,12,8,6]
示例 2:
输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]
class Solution:
def productExceptSelf(self, nums: list[int]) -> list[int]:
left = [1 for _ in nums]
right = [1 for _ in nums]
for i in range(1, len(nums)):
left[i] = nums[i-1] * left[i-1]
for i in range(len(nums)-2, -1, -1):
right[i] = nums[i+1] * right[i+1]
return [left[i] * right[i] for i in range(len(nums))]
接雨水#
给定 n
个非负整数表示每个宽度为 1
的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9
class Solution:
def trap(self, height: list[int]) -> int:
if (len(height) <= 2):
return 0
lmax = [0 for _ in height]
rmax = [0 for _ in height]
for i in range(1, len(height)-1):
lmax[i] = max(lmax[i-1], height[i-1])
for i in range(len(height)-2, 0, -1):
rmax[i] = max(rmax[i+1], height[i+1])
res = 0
for i in range(1, len(height) - 1):
if (min(lmax[i], rmax[i]) - height[i] > 0):
res += (min(lmax[i], rmax[i]) - height[i])
return res
罗马数字转整数#
罗马数字包含以下七种字符: I
, V
, X
, L
,C
,D
和 M
。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2
写做 II
,即为两个并列的 1 。12
写做 XII
,即为 X
+ II
。 27
写做 XXVII
, 即为 XX
+ V
+ II
。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII
,而是 IV
。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX
。这个特殊的规则只适用于以下六种情况:
I
可以放在V
(5) 和X
(10) 的左边,来表示 4 和 9。X
可以放在L
(50) 和C
(100) 的左边,来表示 40 和 90。C
可以放在D
(500) 和M
(1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。
示例 1:
输入: s = "III"
输出: 3
示例 2:
输入: s = "IV"
输出: 4
示例 3:
输入: s = "IX"
输出: 9
示例 4:
输入: s = "LVIII"
输出: 58
解释: L = 50, V= 5, III = 3.
示例 5:
输入: s = "MCMXCIV"
输出: 1994
解释: M = 1000, CM = 900, XC = 90, IV = 4.
class Solution:
SYMBOL_VALUES = {
'I': 1,
'V': 5,
'X': 10,
'L': 50,
'C': 100,
'D': 500,
'M': 1000,
}
def romanToInt(self, s: str) -> int:
ans = 0
n = len(s)
for i, ch in enumerate(s):
val = Solution.SYMBOL_VALUES[ch]
if ((i < n-1) and val < Solution.SYMBOL_VALUES[s[i+1]]):
ans -= val
else:
ans += val
return ans
整数转罗马数字#
罗马数字包含以下七种字符: I
, V
, X
, L
,C
,D
和 M
。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II
,即为两个并列的 1。12 写做 XII
,即为 X
+ II
。 27 写做 XXVII
, 即为 XX
+ V
+ II
。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII
,而是 IV
。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX
。这个特殊的规则只适用于以下六种情况:
I
可以放在V
(5) 和X
(10) 的左边,来表示 4 和 9。X
可以放在L
(50) 和C
(100) 的左边,来表示 40 和 90。C
可以放在D
(500) 和M
(1000) 的左边,来表示 400 和 900。
给你一个整数,将其转为罗马数字。
示例 1:
输入: num = 3
输出: "III"
示例 2:
输入: num = 4
输出: "IV"
示例 3:
输入: num = 9
输出: "IX"
示例 4:
输入: num = 58
输出: "LVIII"
解释: L = 50, V = 5, III = 3.
示例 5:
输入: num = 1994
输出: "MCMXCIV"
解释: M = 1000, CM = 900, XC = 90, IV = 4.
class Solution:
VALUE_SYMBOLS = [
(1000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def intToRoman(self, num: int) -> str:
res = []
for val, symbol in Solution.VALUE_SYMBOLS:
while (num >= val):
res.append(symbol)
num -= val
if (num == 0):
break
return ''.join(res)
最后一个单词的长度#
给你一个字符串 s
,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。
单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。
示例 1:
输入:s = "Hello World"
输出:5
解释:最后一个单词是“World”,长度为5。
示例 2:
输入:s = " fly me to the moon "
输出:4
解释:最后一个单词是“moon”,长度为4。
示例 3:
输入:s = "luffy is still joyboy"
输出:6
解释:最后一个单词是长度为6的“joyboy”。
class Solution:
def lengthOfLastWord(self, s: str) -> int:
r = len(s)-1
while (s[r] == ' '):
r -= 1
i = r
while (i >= 0 and s[i] != ' '):
i -= 1
return r-i
最长公共前缀#
编写一个函数来查找字符串数组中的最长公共前缀。
如果不存在公共前缀,返回空字符串 ""
。
示例 1:
输入:strs = ["flower","flow","flight"]
输出:"fl"
示例 2:
输入:strs = ["dog","racecar","car"]
输出:""
解释:输入不存在公共前缀。
class Solution:
def longestCommonPrefix(self, strs: list[str]) -> str:
if (len(strs) == 1):
return "".join(strs)
ans = ""
minLength = 300
for s in strs:
minLength = min(minLength, len(s))
for i in range(minLength):
c = strs[0][i]
print(c)
for j in range(len(strs)):
if (strs[j][i] != c):
return ans
ans += c
return ans
反转字符串中的单词#
给你一个字符串 s
,请你反转字符串中 单词 的顺序。
单词 是由非空格字符组成的字符串。s
中使用至少一个空格将字符串中的 单词 分隔开。
返回 单词 顺序颠倒且 单词 之间用单个空格连接的结果字符串。
** 注意:** 输入字符串 s
中可能会存在前导空格、尾随空格或者单词间的多个空格。返回的结果字符串中,单词间应当仅用单个空格分隔,且不包含任何额外的空格。
示例 1:
输入:s = "the sky is blue"
输出:"blue is sky the"
示例 2:
输入:s = " hello world "
输出:"world hello"
解释:反转后的字符串中不能存在前导空格和尾随空格。
示例 3:
输入:s = "a good example"
输出:"example good a"
解释:如果两个单词间有多余的空格,反转后的字符串需要将单词间的空格减少到仅有一个。
class Solution:
def reverseWords(self, s: str) -> str:
ans = []
end, start = 0, 0
i = len(s) - 1
while (i >= 0):
if (s[i] == " "):
i -= 1
continue
end = i + 1
while (s[i] != " " and i >= 0):
i -= 1
start = i + 1
ans.append(s[start: end])
return ' '.join(ans)
N 字形变换#
将一个给定字符串 s
根据给定的行数 numRows
,以从上往下、从左到右进行 Z 字形排列。
比如输入字符串为 "PAYPALISHIRING"
行数为 3
时,排列如下:
P A H N
A P L S I I G
Y I R
之后,你的输出需要从左往右逐行读取,产生出一个新的字符串,比如:"PAHNAPLSIIGYIR"
。
请你实现这个将字符串进行指定行数变换的函数:
string convert(string s, int numRows);
示例 1:
输入:s = "PAYPALISHIRING", numRows = 3
输出:"PAHNAPLSIIGYIR"
示例 2:
输入:s = "PAYPALISHIRING", numRows = 4
输出:"PINALSIGYAHRPI"
解释:
P I N
A L S I G
Y A H R
P I
示例 3:
输入:s = "A", numRows = 1
输出:"A"
class Solution:
def convert(self, s: str, numRows: int) -> str:
if (numRows == 1):
return s
res = ["" for _ in range(numRows)]
step = -1
i, j = 0, 0
while (i < len(s)):
if (j == 0 or j == numRows-1):
step = 0 - step
res[j] += s[i]
j += step
i += 1
return ''.join(res)
找出字符串中第一个匹配项的下标#
给你两个字符串 haystack
和 needle
,请你在 haystack
字符串中找出 needle
字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle
不是 haystack
的一部分,则返回 -1
。
示例 1:
输入:haystack = "sadbutsad", needle = "sad"
输出:0
解释:"sad" 在下标 0 和 6 处匹配。
第一个匹配项的下标是 0 ,所以返回 0 。
示例 2:
输入:haystack = "leetcode", needle = "leeto"
输出:-1
解释:"leeto" 没有在 "leetcode" 中出现,所以返回 -1 。
class Solution:
def strStr(self, haystack: str, needle: str) -> int:
l1, l2 = len(haystack), len(needle)
if (l2 > l1):
return -1
for i in range(0, l1 - l2 + 1):
if (haystack[i] != needle[0]):
continue
j = 0
while (j < l2 and haystack[i + j] == needle[j]):
j += 1
if (j == l2):
return i
return -1
判断子序列#
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"
是"abcde"
的一个子序列,而"aec"
不是)。
进阶:
如果有大量输入的 S,称作 S1, S2, ... , Sk 其中 k >= 10 亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?
示例 1:
输入:s = "abc", t = "ahbgdc"
输出:true
示例 2:
输入:s = "axc", t = "ahbgdc"
输出:false
class Solution:
def isSubsequence(self, s: str, t: str) -> bool:
print(s,t)
if(len(s) == 0 or s == t):
return True
for i in range(0,len(t)):
if(t[i] == s[0]):
return self.isSubsequence(s[1:],t[i+1:])
return False
两数之和 II - 输入有序数组#
给你一个下标从 1 开始的整数数组 numbers
,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target
的两个数。如果设这两个数分别是 numbers[index1]
和 numbers[index2]
,则 1 <= index1 < index2 <= numbers.length
。
以长度为 2 的整数数组 [index1, index2]
的形式返回这两个整数的下标 index1
和 index2
。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间。
示例 1:
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
示例 2:
输入:numbers = [2,3,4], target = 6
输出:[1,3]
解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。
示例 3:
输入:numbers = [-1,0], target = -1
输出:[1,2]
解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
class Solution:
def twoSum(self, numbers: list[int], target: int) -> list[int]:
start = 0
end = len(numbers) - 1
while(start < end):
if(numbers[start] + numbers[end] == target):
return [start+1,end+1]
elif(numbers[start] + numbers[end] > target):
end -= 1
else:
start += 1
盛最多水的容器#
给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
** 说明:** 你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
class Solution:
def maxArea(self, height: list[int]) -> int:
start,end = 0,len(height)-1
res = (end-start) * min(height[start],height[end])
while(start < end):
if(height[start] < height[end]):
start += 1
else:
end -= 1
res = max(res,(end-start) * min(height[start],height[end]))
return res